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Response function including collisions for an interacting fermion gas
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The response function of an interacting fermion gas is considered in the entire (kW ,v) space. Applying a
generalized linear response theory, it is expressed in terms of determinants of equilibrium correlation functions,
which allow for a systematic perturbative treatment. The relation to dynamical local-field factors is given. As
a special case, the dielectric function is evaluated for two-component~hydrogen! plasmas at arbitrary degen-

eracies. Collisions are treated in Born approximation leading to a (kW ,v)-dependent collision integral. The link
to the dynamical conductivity is given in the long-wavelength limit. Sum rules are discussed.
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PACS number~s!: 52.25.Mq, 05.30.Fk, 71.45.Gm
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The response of an interacting fermion system to an
ternal force is of interest in different fields of physics. In ca
of small deviations from equilibrium, linear response theo
can be used to describe the reaction to a time and s
dependent perturbation. As an application we will consi
the response of a two-component plasma to an external fi

The many-particle system is investigated under the in
ence of the potentialUext(rW,t)5ei (kW•rW2vt)Uext(kW ,v) 1 c.c.
The total HamiltonianH tot(t)5H1Hext(t) contains the sys-
tem HamiltonianH and the interaction with the external po
tential

Hext~ t !5(
ps

Uext~kW ,v!e2 ivtnp,2k
s 1c.c., ~1!

wherenp,k
s 5cp2k/2,s

† cp1k/2,s is the Wigner transform of the
single-particle density given in terms of creation and ann
lation operators in momentum representation. The indes
indicates spin, but can also be extended to further chara
istics such as species~electrons, ions! so thatUext could also
depend ons.

As a consequence of the external perturbation, an indu
density will arise. In linear response theory, see, e.g.,@1#, the
response functionx(kW ,v) relates the induced density to th
potentialUext(kW ,v). It can be expressed in terms of equili
rium correlation functions. In particular, the fluctuatio
dissipation theorem relates the response function to the
namical structure factorS(kW ,v) according to Imx(kW ,v)
52p@12exp(2b\v)#S(kW,v)/\.

Considering the special case of the response of an e
tron system~massm, charge2e) to an electrical field, the
dielectric function e(kW ,v)5@11x(kW ,v)/(e0k2)#21 is re-
lated to the polarization functionP(kW ,v) and the dynamic
electrical conductivitys(kW ,v) according to

e~kW ,v!511
i

e0v
s~kW ,v!512

1

e0k2 P~kW ,v!. ~2!

The elaboration of a many-particle theory for these qu
tities is an essential problem in quantum statistics. Evalu
PRE 601063-651X/99/60~3!/2484~4!/$15.00
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ing the polarization function in zeroth order with respect
the interaction@2#,

P (0)~kW ,v!5
e2

4p3E d3p
f p1k/22 f p2k/2

Ep1k/22Ep2k/22\v2 ih
, ~3!

the well-known RPA expression for the dielectric function
obtained. Here,f p5@exp(bEp2bm)11#21 denotes the Ferm
distribution function,b51/(kBT) the inverse temperature,m
the chemical potential fixed by the densityn, and Ep
5\2p2/(2m). The limit h→0 is to be taken after the ther
modynamic limit.

The static limit (v50) can be improved by using th
concept of local-field factors@3#. This treatment has bee
extended to finite frequencies by introducing dynami
local-field factorsG(kW ,v) according to

P~kW ,v!5
P (0)~kW ,v!

11G~kW ,v!P (0)~kW ,v!/~e0k2!
. ~4!

Different approximative methods to determineG(kW ,v) have
been developed such as perturbation expansions, see@4#, and
the parameterization of the dielectric function via sum ru
@5–7#. A study of the dynamical local-field factors within
time-dependent mean-field theory neglecting damping
fects was reported in@8#.

In this Rapid Communication, we consider a systema
quantum statistical approach to the dynamical local-field f
tors at finite temperatures performing a perturbation exp
sion forP21(kW ,v). Sum rules for the dielectric function ar
checked. Our approach gives a direct link to the theory
conductivity in Coulomb systems; see@9#. Evaluating corre-
lation functions, a (kW ,v)-dependent collision term is derived

A generalized linear response theory has been given
cently, see@10#, leading to the following expression for th
response function@11# or density-density correlation func
tion, respectively,

x~kW ,v!5
ik2bV0

vuMmn~kW ,v!u
U 0 M0n~kW ,v!

Mm0~kW ,v! Mmn~kW ,v!
U .

~5!
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The elementsMmn(kW ,v) of the determinants are given b
equilibrium correlation functions of an appropriately chos
set of relevant operators$A1 ,A2 , . . . ,Am , . . . %.

Different choices for the set of relevant observables s
as finite sets of moments of then-particle distribution func-
tions are possible. In the present Rapid Communication
will restrict ourselves to the current operator

Jk52
e\

mV0
(
p,s

pznp,k
s ~6!

of the electron system only. We consider an isotropic sys
so that the polarization function is a scalar. The vectokW

5keW z is taken in thez direction.
In this first-moment approach@11#, Eq. ~5! reads

x~k,v!52 i
k2

v
bV0

~Jk ;Jk!
2

MJJ~k,v!
, ~7!

where the denominator contains the collision term

MJJ~k,v!52 iv~Jk ;Jk!1^J̇k ; J̇k&v1 ih

2^ J̇k ;Jk&v1 ih

1

^Jk ;Jk&v1 ih
^Jk ; J̇k&v1 ih .

~8!

The correlation functions are defined as

~A;B!5
1

bZE0

b

dt Tr@ e2bH1bmNA~2 i\t!B†#,

~9!
^A;B&z5E

0

`

dteizt~A~ t !;B!,

with A(t)5exp(iHt/\)Aexp(2iHt/\), Ȧ5 i @H,A#/\, and Z
5Tr exp(2bH1bmN). They can be expressed in terms
thermodynamic Green functions,

~A;B!52
1

bE2`

` dv

p

1

v
ImGAB†~v2 ih!,

~10!

^A;B&z52
i

bE2`

` dv

p

1

z2v

1

v
ImGAB†~v2 ih!.

The relation to the thermodynamic Green functio
GAB†(zm), zm being Matsubara frequencies, permits us
perform systematic perturbation expansions.

The correlation function (Jk ;Jk) can be related to the
commutator of position and linear momentum~cf. @9#!,

~Jk ;Jk!5e2n/~mbV0!. ~11!

The evaluation ofMJJ(k,v) using perturbation theory wil
be given below.

The dynamical local-field factorsG(k,v), Eq. ~4!, are
directly related toMJJ(k,v), Eq. ~8!, according to

G~k,v!5 i
e0bm2V0v

e4n2
MJJ~k,v!2

e0k2

P (0)~k,v!
11.

~12!

Note that the equivalence of Eqs.~7! and ~8! with
h

e

m

x~k,v!52 i
k2

v
bV0^Jk ;Jk&v1 ih , ~13!

the Kubo formula@12#, can be shown using partial integra
tions @11#. Being formally equivalent, different results ar
obtained within finite order perturbation theory for the co
relation functions. On one hand, the perturbation expans
of the Kubo expression atkW50, v→0 to obtain the dc con-
ductivity is involved because divergences arise. On the o
hand, the Chapman-Enskog method or the Grad met
yielding the conductivity as a ratio of two determinants@9#
are exactly reproduced within the generalized linear respo
theory, Eq.~5!, using a finite number of moments of th
single-particle distribution function as relevant observable

For exploratory calculations, we consider a tw
component hydrogen plasma in adiabatic limit, where
interacting electrons are moving under the influence of
potential of pointlike ions with chargee, fixed at positions
RW j . The HamiltonianH5T1V contains the kinetic energy
T5(p,sEpcps

† cps and the interaction

V52 (
j ,qp,s

V~q!e2 iqW •RW jcp1qs
† cps

1
1

2 (
qpp8,ss8

V~q!cp1qs
† cp82qs8

† cp8s8cps . ~14!

V(q)5e2/(e0V0q2) denotes the Coulomb potential. The e
tension to an impurity model accounting for the ion dyna
ics via a dynamical structure factor is straightforward.
order to generalize for more complex ions, the Coulomb
teraction has to be replaced by pseudopotentials.

Within the perturbation expansion ofMJJ(k,v)5MJJ
(0)

1MJJ
(1)1MJJ

(2)1•••, higher powers ofV arise due to the ex-

plicit interaction in J̇k5 J̇k
(T)1 J̇k

(V) , where J̇k
(T)5 i @T,Jk#/\,

andJ̇k
(V)5 i @V,Jk#/\. Higher-order contributions are also du

to the perturbative expansion of the correlation functio
e.g., by using a Feynman diagram analysis of the Gr
functions according to Eq.~10!.

Whereas in Eq. ~12! the zeroth-order contribution
MJJ

(0)(k,v) is compensated by the terme0k2/P (0)(k,v), the
first-order contributions contain terms from reducible d
grams compensating the 1. The remaining first-order con
butions ofMJJ

(1)(k,v) are due to the explicitV in J̇k
(V) and to

terms fromJ̇k
(T) , expanding the correlation functions up

first order~self-energy and vertex corrections!. The evalua-
tion of the corresponding Feynman diagrams gives for a
trary temperatures the result

G(1)~k,v!5
m2e4

64p6\4@P (0)~k,v!#2

3E d3pE d3p8
f p1k/22 f p2k/2

~pW 2pW 8!2
~ f p81k/2

2 f p82k/2!S 1

pz2mv/~\k!2 ih

2
1

pz82mv/~\k!2 ih D 2

. ~15!



ilit

ry
co

au
r-
t
-

o

c

id
a
io

cy
e

he

e

of
for

a

f

er
re,

r
y

ed
um

re
be-

-

tric

RAPID COMMUNICATIONS
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At zero temperature, an analytical expression forG(1)(k,v)
can be found, see@4#, and@13# for the static limitG(1)(k,0).
The limiting cases are in accordance with the compressib
sum rule, limk→0G(1)(k,0)5k2/(4kF

2), and the relation to the
pair distribution at zero distance, limk→`G(1)(k,0)51/3,
which are correct within the order of perturbation theo
considered here, i.e., comparing with properties of the un
related fermion gas@14#. In higher orders of perturbation
theory, the static limit has been investigated by different
thors@3#. We will not go in this direction since we are inte
ested in the long-wavelength limit at arbitrary frequencies
give the link to the theory of electrical conductivity in Cou
lomb systems.

In the long-wavelength limit follows limk→0G(1)(k,v)
}k2. Thus, no contribution from these exchange terms
first order inV will modify the behavior atk→0. To include
collisions in Born approximation, we have to take into a
count the second-order termMJJ

(2)(k,v). The contribution

due to the explicit dependence onV2 from J̇k
(V) , caused by

the electron-ion scattering, is evaluated as

G(2,V)~k,v!

5
e0m2vV0

2

32p6e2n\3E d3pE d3qV2~q!Si~q!

3
1

pzk1pW •qW

f p2k/22q/22 f p1k/21q/2

pzk1pW •qW 2mv/\2 ih

3F qz
21

2e2nk

\vP (0)~k,v! S ~pz1qz/2!qz

pz1qz /22
mv

\k
2 ih

2
~pz2qz/2!qz

pz2qz /22
mv

\k
2 ihD G . ~16!

Si(q)5^( i j exp@iq•(Ri2Rj )#/(nV0)& is the structure factor
of the ion system. In the long-wavelength limit to be cons
ered below, terms arising from the electron-electron inter
tion do not contribute because of momentum conservat
Furthermore, the terms related toJ̇k

(T)5 ie\2k/
(m2V0)(pspz

2np,k
s contain a factork and do not give any

contribution.
In the limit k→0, we find from Eq.~16!

G(2)~0,v!5
e0m2vV0

2

32p6e2n\3E d3pE d3qqz
2V2~q!Si~q!

3
1

pW •qW

f p2q/22 f p1q/2

pW •qW 2mv/\2 ih
. ~17!

Using the local-field factorsG(k,v), Eq. ~4!, the dielectric
function ~2! can be rewritten as

e~0,v!512
vpl

2

v@v1vpl
2 ReG~0,v!/v#1 iv/t~v!

,

~18!
y

r-

-

o

f

-

-
c-
n.

which is a Drude-like expression with the plasma frequen
vpl

2 5e2n/(e0m) and a frequency-dependent relaxation tim
t21(v)5vpl

2 Im G(0,v)/v @15#. According to the discussion
above, the first-order termG(1)(k,v) does not contribute to
the long-wavelength limit. The second-order term, Eq.~17!,
gives a result for the dielectric function shown in Fig. 1. T
Drude formula is obtained replacingG(2)(0,v)/v by
limv→0G(2)(0,v)/v. The high-frequency asymptotics of th
Drude formula, Ime(0,v)}t(0)vpl

2 /v3, is also shown in Fig.
1 ~dotted line!. The account of the frequency dependence
G(2)(0,v) leads to deviations from the Drude expressions
frequencies higher than the plasma frequency. Using
saddle-point expansion, the asymptotic behavior}v24.5 was
found ~dash-dotted line!. The inset shows the behavior o
2Ime21(0,v) near the plasma frequency. Due to thev
dependence oft(v), the plasmon peak becomes narrow
compared with the Drude expression. Furthermo
due to the finite real part ofG(0,v) the peak position is
shifted.

For v→0 we get the well-known Born approximation fo
the dc conductivitysdc5e0vpl

2 t(0) of a degenerate weakl
interacting electron system, cf.@16#,

sdc5
12p3e2\3n

m2V0
2 F E

0

`

dqq3V2~q!Si~q! f q/2G21

. ~19!

The Ziman formula is obtained by introducing a screen
potential, which can be done in a systematic way by s
ming up the corresponding ring diagrams@9#.

Several exact properties of the dielectric function a
known @17#, such as sum rules and the high-frequency
havior. In particular, we have

E
2`

` dv

p
vn Ime61~k,v!5Sn

(6)~k!. ~20!

FIG. 1. Imaginary part of the dielectric function in the long
wavelength limit Eq.~18! as a function ofv, compared with the
Drude formula. An electron gas atr s53.5, T5300 K is consid-
ered. The inset displays the imaginary part of the inverse dielec
function near the plasma frequency.
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A numerical check of thef-sum rule and the conductivity
sum rule,2S1

(2)(k)5S1
(1)(k)5vpl

2 , has been carried out fo
a two-component plasma with parametersr s53.5 and T
5300 K, cf. @5#. It has been found numerically that the d
electric function in the long-wavelength limit~18! obeys
both sum rules within an accuracy of 0.1%. The consist
consideration of both the real and the imaginary part of
frequency-dependent collision termG(0,v) is crucial for the
sum rules. Taking into account a frequency dependenc
the relaxation time only, i.e., neglecting ReG(0,v) in Eq.
~18!, leads to a considerable violation of the sum rules of
order of 10%. Until now, a check of the sum rules at fin
values of the wave vector has only been performed fo
classical, Maxwellian two-component plasma@11# for arbi-
trary wave vectorsk.

Of special interest is the third-moment sum ruleS3
(2)(k),

which is divergent within the Drude model. To obey the th
moment as well as the compressibility sum rule simu
neously, frequency-dependent local-field factors are requ
@18#, i.e., a frequency-dependent collision term is need
Evaluating the collision term~17! in the high-frequency limit
using the saddle-point method, Ime21(0,v) behaves as
v29/2, implying that the third-moment integral converge
whereas higher moments are nonconverging. Note that t
are different forms of the asymptotic behavior that a
quoted in the literature depending on the approximati
made, such asv25 in @7#. For the degenerate electron ga
due to the electron-electron collisions a high-frequency
havior of the imaginary part of the dielectric functio
s

Z.
,

a-
t
e

in

e

a

-
d

d.

,
re

s
,
-

}k2v211/2 has been derived fork small compared with the
Fermi wave number@18#.

In conclusion, a systematic approach to t
(k,v)-dependent local-field factors at finite temperatures
been given. Furthermore, we derived a (k,v)-dependent col-
lision term, and showed that the sum rules are obeyed in
long-wavelength limit. Arbitrary degeneracy is considere
and the direct connection with the theory of dc conductiv
is shown.

The single moment Born approximation, Eqs.~7!, ~15!,
and ~16!, can be improved systematically in two direction
~i! Higher order perturbation theory can be applied to de
mine the correlation functions. As well known for the limi
ing cases, the dc conductivity should be evaluated by c
sidering a screened interaction or by treating stro
collisions introducing a ladderT matrix @9#. Also, the local-
field factors are improved introducing the pair distributio
function. ~ii ! Taking into account further moments of th
single-particle distribution function, see@9,16#, the results
obtained by perturbation expansion of Eq.~5! are consistent
with the Chapman-Enskog or the Grad approach to the
conductivity.

After improving the Born approximation, a compariso
with experimental data for the dielectric function in hydr
genlike plasmas or, in a more specific treatment of the e
tron system, in condensed matter would be of interest
possible way to check the present dielectric function is
calculate the dynamical structure factor that is available fr
molecular dynamics simulations; cf.@19#.
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